ADS600- ${ }^{\text {™ }}$ Installation and User Manual

NavWorX ${ }^{\circ}$

Business Address:

NavWorx Inc.
3906 Industrial St, Suite 100
Rowlett, TX 75088

Telephone:

(888)-NAVWORX (628-9679)

Facsimile:

888-628-9679

Email: support@NavWorx.com
Website: www.NavWorx.com
Information in this document is subject to change without notice. NavWorx reserves the right to modify its products and documentation without notice and is under no obligation to notify anyone of such changes or improvements.

NavWorx is a registered trademark of NavWorx Incorporated. ADS600-B ${ }^{\text {TM }}$ is a trademark of NavWorx Incorporated. These trademarks may not be used without the express written permission of NavWorx Incorporated.

No part of this document may be copied, reproduced, transmitted, disseminated, downloaded or stored on any storage medium without the express written permission of NavWorx. NavWorx grants permission to download a single copy of this document onto a hard drive or other electronic storage medium to be viewed for personal use as long as the downloaded or printed copy contains the complete text of this copyright notice. Unauthorized commercial distribution of any revision of this documentation is strictly prohibited.

Revision History

Revision	Date	Comments
01	$04 / 20 / 2010$	Initial release
02	$05 / 11 / 2010$	Revised FCC statement
03	$08 / 29 / 2010$	Updated Wiring Diagrams. Added content to 3.4.1 GPS Antenna, 3.5.4 Cabling and Wiring, 3.5.5 Air Circulation and Cooling Sections, and 3.8.3 Mounting and Wiring Sections.
04	$09 / 12 / 2010$	Added ADS600-B to GRT Wiring Diagrams. Replaced text of Maintenance PC section with reference to Maintenance Port Tutorial document, 240-0007-00-02.
05	$09 / 18 / 2010$	Added Quick Start Guide and ADS600-B Maintenance Port Tutorial Sections.
06	$10 / 10 / 2010$	Changed download link for TeraTermPro
07	$10 / 17 / 2010$	Added GNS 430(W) (ARINC 429) Wiring Diagram. Added wiring diagrams to table of contents.
08	$12 / 02 / 2010$	Added GMX 200/MX20 RS422 and ARINC 429 Interconnect Diagrams.
09	$12 / 30 / 2010$	Added GTX 330, GTX 327 and SL70 Transponder Interconnect Diagrams.
10	$01 / 28 / 2011$	Added Suppression Input and UAT Indicator to Interconnect Diagrams. Uniquely identify ports of GNS480 743A Interconnect Diagram. Added ADS600-B to AFS (ADS-B) Interconnect Diagram.
11	$04 / 06 / 2011$	Corrected Disclaimer.
12	$04 / 25 / 2011$	Added ground signal to GTX 330 and GTX 327 Interconnect Diagrams.
13	$06 / 18 / 2011$	Changed pin outs for ADS600- B serial numbers 851 and above.
14	$07 / 04 / 2011$	Corrected UAT control panel interface. Corrected pins 33 and 34 of table 3-6. Changed UAT control from pin 7 to pin 33 for SL70, GTX330, and GTX327 diagrams.

List of Effective Pages

Page	Rev								

End User License Agreement (EULA)

Terms. By installing or using the ADS600-B ("product"), you agree to be bound by the terms and conditions of the following license agreement. Please read this agreement carefully. NavWorx Incorporated ("NavWorx") grants you a limited, non-exclusive license to use the product. Title, ownership rights, and intellectual property rights in and to the product remain with NavWorx.

Refund. If you do not agree to the terms of this EULA, NavWorx Inc. is unwilling to license the product to you. In such event, you may not use the licensed product, and you should promptly contact NavWorx for a refund. The product must not have been used or installed in order to obtain a full refund.

No Warranties. Except as expressly provided in the limited warranty section, the products' hardware and its operating system software are provided to you "as is" without warranty of any kind, either expressed or implied, including, but not limited to, waranties of noninfringement, merchantability, and /or fitness for a particular purpose. The entire risk of the quality and performance of both the software and hardware is with the user.

Copyright. You acknowledge that the product is the property of NavWorx and is protected under United States of America copyright laws and international copyright treaties. You further acknowledge that the structure, organization, and source design of the hardware and software are valuable trade secrets of NavWorx. You agree not to open the product, break the EULA seal, nor decompile, disassemble, modify, reverse assemble, reverse engineer, or reduce to human readable form the hardware or software or any part thereof or create any derivative works based on the product.

No Liability for Consequential Damages. NavWorx Inc. and its suppliers shall not be held liable for any damages suffered or incurred by you (including, but not limited to, general, special, consequential or incidental damages for loss of business profits, business interruption, personal compensation and the like), arising from or in connection with the delivery, use, or performance of the product and its software.

Customer Remedies. NavWorx Inc. and its suppliers entire liability and your exclusive remedy shall be, at NavWorx' option, either (1) return of the product purchase price, not to exceed list price, or (2) repair or replacement of the product which is returned to NavWorx with original proof of purchase.

Disclaimer

Symbology seen throughout this documentation highlight important information. The following table defines how to interpret these symbols:

Symbol	Description
S\%	Hazardous.
!	Warning.
Important.	

The ADS600-B is used as an aid to visual acquisition of traffic and weather and it is to be used only for pilot and crew situational awareness.

The ADS600-B does not relieve the flight crew of seeing and avoiding traffic, obstacles and weather. Installation of the ADS600-B does not relieve the pilot of consulting approved data sources prior to and during each flight.

The ADS600-B is not a collision-avoidance-device. Any deviation from ATC clearance, given cockpit information derived from the ADS600-B, must be approved by ATC.
! The ADS600-B is a Universal Access Transceiver (UAT) that interfaces with an MFD or CDTI to display UAT, TIS-B and FIS-B products. NavWorx is not responsible for how a display device renders these products. Nor is NavWorx responsible for the failure of the display device to render these products.

The ADS600-B receives TIS-B and FIS-B products from ADS-R ground stations. NavWorx is not responsible for the content, or lack of content, in TIS-B and FIS-B product offerings by the FAA.

NavWorx is not responsible for the failure of ADS-R groundstations to broadcast TIS-B and FIS-B products.
NavWorx is not liable for damages as a result of use or misuse of the ADS600-B.

NavWorx has tested the product in accordance with FAA guidance material. However, issues may still be present. We'll make a best faith effort to resolve issues as they arise.

This product is licensed under an End User License Agreement (EULA). If you don't agree with the EULA, or this Disclaimer, you must return the equipment.

NavWorx Two Year Limited Warranty

Limited Warranty for FAA Certified Products. Certified NavWorx products are warranted to be free from defects in material and workmanship for two years from the date of original purchase. For the duration of the warranty period, at its option, NavWorx will repair or replace any product which fails during normal use. No charge will be made to the customer for parts and labor for product repair or replacement provided that the customer shall be responsible for all shipping cost. NavWorx, at its sole discretion, retains the exclusive right to either repair or replace the product unit with a new unit or with a newly reconditioned unit. Any replacement product will be warranted for the remainder of the original warranty period or ninety (90) days, whichever is longest.

Limited Warranty for Non-Certified Products. Non-certified NavWorx products are warranted to be free from defects in material and workmanship for two years from the date of first flight of the experimental aircraft in which the product is installed. Customer must provide proof of first flight when requesting warranty service. For the duration of the warranty period, at its option, NavWorx will repair or replace any product which fails during normal use. No charge will be made to the customer for parts and labor for product repair or replacement provided that the customer shall be responsible for all shipping cost. NavWorx, at its sole discretion, retains the exclusive right to either repair or replace the product unit with a new unit or with a newly reconditioned unit. Any replacement product will be warranted for the remainder of the original warranty period or ninety (90) days, whichever is longest.

Restrictions. This Limited Warranty does not apply if (a) the product has not been installed, operated, or maintained in accordance with instructions supplied by NavWorx, (c) has been altered, except by NavWorx or its authorized representative, or (c) has been subjected to abnormal physical or electrical stress, abnormal environmental conditions, misuse, negligence, or accident, (d) the factory applied original case seals or serial number label has been broken, altered or removed from the product.

Disclaimer of Warranty. EXCEPT AS SPECIFIED IN THIS WARRANTY SECTION, ALL EXPRESS OR IMPLIED

 CONDITIONS, REPRESENTATIONS, AND WARRANTIES INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, STATUTORY OR OTHERWISE ARE HEREBY EXCLUDED TO THE EXTENT AN IMPLIED WARRANTY CANNOT BE EXCLUDED. SUCH WARRANTY IS LIMITED IN DURATION TO THE EXPRESS WARRANTY PERIOD. BECAUSE SOME STATES OR JURISDICTIONS DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, THE ABOVE LIMITATION MAY NOT APPLY. THIS WARRANTY GIVES THE CUSTOMER SPECIAL LEGAL RIGHTS AND THE CUSTOMER MAY HAVE OTHER LEGAL RIGHTS THAT MAY VARY FROM JURISDICTION TO JURISDICTION.NAVWORX SHALL NOT BE LIABLE, IN ANY EVENT, FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, WHETHER RESULTING FROM THE USE, MISUSE OR INABILITY TO USE THE PRODUCT OR FROM DEFECTS IN THE PRODUCT. BECAUSE SOME STATES OR JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Warranty Service. Warranty repair service shall be provided directly by NavWorx. To obtain warranty service, an original copy of the sales receipt for the product from NavWorx or a retailer is required. The following steps describe how to return your unit for warranty service.
$\checkmark \quad$ Step 1. Call or email NavWorx and describe the problem that you are having and request a Return Material Authorization (RMA) tracking number. Also, provide the unit's serial number, your shipping address and daytime telephone number.

Telephone	(888)-NAVWORX (628-9679)
Email	support @ NavWorx.com

\checkmark Step 2. Once you have received an RMA number, securely pack the unit and ship it, insured, to the following address:

NavWorx Incorporated
RMA Number: (insert your RMA number here)
3906 Industrial St, Suite 100
Rowlett, TX 75088

ADS600-B Installation Quick Start Guide

The equipment installer must verify the items of this quick start guide prior to operating the ADS600-B unit in the National Airspace System (NAS). A log file recording the current configuration of the ADS600-B must be emailed to support @ navworx.com for our support personnel to be able to answer your questions.

The following MUST be completed before powering up the ADS600-B:
\square Connect (RG-400) the UAT antenna to the port labeled "UAT ANT"
\square Connect (RG-400) the GPS antenna to the port labeled "GPS ANT"
\square Connect 'fused' power to the ADS600-B unit via port 1 (DB37 connector)
\square Ensure that the ADS600-B's maintenance port (DB9 connector) is accessible
\square Verify that a pressure altitude encoder source is connected to the ADS600-B (via the DB37 connector)
\square Before your first flight you MUST verify the configuration of the ADS600-B unit.
\square Position aircraft and the ADS600-B unit to have a 'view' of the sky and the GPS satellites
\square Load TERATERM onto your PC
\square Configure TeraTerm terminal emulator
\square Connect the (TeraTerm) COM port of your PC to the maintenance port (DB9 connector) of the ADS600-B unit
\square Enable TeraTerm logging
\square Type "READ ALL" on the TeraTerm input

- Type "READ GPS ALL" on the TeraTerm input
\square Email log file (captured by TeraTerm) to support@navworx.com

Refer to the ADS600-B Maintenance Port Tutorial section for more detailed configuration instructions.

Table of Contents

Revision History 3
List of Effective Pages 4
End User License Agreement (EULA) 5
Disclaimer 6
NavWorx Two Year Limited Warranty 7
ADS600-B Installation Quick Start Guide 8
Definitions and Acronyms 13
1 Accessories and Packing List 14
1.1 Unpacking Equipment 14
1.2 Package Contents 14
2 About this Manual 15
2.1 FCC Grant of Equipment Authorization 15
3 Equipment Description 15
3.1 Overall Specifications 16
3.2 Transmitter Specification 18
3.3 System Interfaces 18
3.3.1 Display 19
3.3.2 Maintenance Port 19
3.3.3 Annunciator Output 19
3.4 Antenna Requirements 19
3.4.1 GPS Antenna 19
3.4.2 UAT Antenna 19
3.5 Installation 20
3.5.1 Materials Not Supplied 20
3.5.2 Tools Required 21
3.5.3 Equipment Mounting 21
3.5.4 Cabling and Wiring 22
3.5.5 Air Circulation and Cooling 23
3.6 Electrical Connections 23
3.6.1 Connectors 23
3.6.2 Interface Connector Definition 24
3.6.3 I/O Connector (P1) 25
3.7 Functional Descriptions 28
3.7.1 Power 28
3.7.2 Discrete Outputs 28
3.7.3 Discrete Inputs 28
3.7.4 PPS Time Mark Input 29
3.7.5 Serial Interfaces 29
3.8 Post Installation Check 30
3.8.1 Maintenance PC 30
3.8.2 Electrical Load Analysis 30
3.8.3 Mounting and Wiring Check 31
3.8.4 Functional Test 32
3.8.5 Weight and Balance 32
4 Limitations 32
4.1 Traffic Display 32
5 Troubleshooting 32
6 Maintenance 32
6.1 Altitude Source 32
6.2 Calibration 32
6.3 Tune-Up 32
6.4 Battery Replacement 32
6.5 Cleaning 33
Product Registration 34
ADS600-B Maintenance Port Tutorial 35
Assumptions 35
Powering up the ADS600-B 36
ADS600-B COMMAND Format 37
Configuring ICAO Address 37
Configuring ADS600-B For Traffic/Weather Display Devices 38
PRESSURE AlTITUDE InPUT 38
DETERMINING GPS RECEPTION 39
Monitoring Traffic Output 40
View Current ADS600-B Configuration \& Status 41
VERIFYING ADS600-B TO TRAFFIC DISPLAY InTERFACE 41
Upgrading ADS600-B Software 42
TERATERM 49
Maintenance Port Tips 52
Maintenance Port Help Commands 53
Verifying ADS600-B Configuration 56
Interconnect Diagram: ADS600 to GPSMAP® TIS-A 57
Interconnect Diagram: Bluetooth Display Port 58
Interconnect Diagram: Display Port 59
Interconnect Diagram: ADS600 Maintenance Port to Computer 60
Interconnect Diagram: Composite-TIS ${ }^{\text {TM }}$ 61
Interconnect Diagram: ADS600 to AFS 62
Interconnect Diagram: ADS600 to AFS (TIS Traffic) 63
Interconnect Diagram: ADS600-B to GRT 64
Interconnect Diagram: ADS600-B to GRT HX/HS/WS (TIS Traffic) 65
Interconnect Diagram: GNS 480 ARINC 743A Position Source. 66
Interconnect Diagram: ADS600-B to GNS 480 Traffic (ARINC 429) 67
Interconnect Diagram: ADS600-B to GNS 480 Traffic (RS-232 TIS) 68
Interconnect Diagram: ADS600-B to GNS 430 Traffic (ARINC 429) 69
Interconnect Diagram: ADS600 to Chelton 70
Interconnect Diagram: ADS600 to Chelton (Composite TIS ${ }^{\text {TM }}$) 71
Interconnect Diagram: ADS600-B to MX20/GMX 200 (RS422 Traffic/Weather) 72
Interconnect Diagram: ADS600-B to MX20/GMX 200 (ARINC 429 Traffic) 73
Interconnect Diagram: ADS600-B to SL70 Transponder Control 74
Interconnect Diagram: ADS600-B to GTX 330 Transponder Control 75
Interconnect Diagram: ADS600-B to GTX 327 Transponder Control 76

List of Tables

Table 1-1: Package Contents 14
Table 1-2: ADS600-B Installation Kit Contents (P/N 210-0004-00-00) 14
Table 3-1: Acceptable ADS600-B UAT Antennas 20
Table 3-2: Acceptable ADS600-B GPS Antennas 21
Table 3-3: Crimp Tools for High Density 22-24 AWG Socket Contact 21
Table 3-4: Connectors 23
Table 3-5: I/O Connector Pin-Out (P1) for ADS600-B serial numbers 851 and above 26
Table 3-6: I/O Connector Pin-Out (P1) for ADS600-B serial numbers below 851 27
Table 3-7: Recommended Circuit Breaker. 31
Table 3-8: ADS600-B Weights 32

List of Figures

Figure 3-1: Top view of ADS600-B UAT Data Link Transceiver 15
Figure 3-2: ADS600-B UAT Data Link Transceiver System Diagram 18
Figure 3-3: ADS600-B Mounting Bracket Pattern 22
Figure 3-4: ADS600-B DB37, UAT and GPS Connectors 24
Figure 3-5: 37 Pin D-Sub Male Connector (P1) 25

Definitions and Acronyms

ADC	Air Data Computer
ADS600-B	Automatic Dependent Surveillance universal access transceiver
ADS-B	Automatic Dependent Surveillance Broadcast
ADS-R	Automatic Dependent Surveillance Rebroadcast
AHRS	Attitude Heading Reference System
ATC	Air Traffic Control
CDTI	Cockpit Display of Traffic Information
FCC	Federal Communications Commission
FAA	Federal Aviation Administration
FIS-B	Flight Information Services Broadcast
MFD	Multifunction Display
GBT	Ground Based Transceiver (also known as ADS-R)
PC	Personal Computer
STC	Supplemental Type Certificate
TIS-A	Traffic Information Services provided by Mode S transponder
TIS-B	Traffic Information Services Broadcast
TSO	Technical Standard Order
UAT	Universal Access Transceiver
WAAS	Wide Area Augmentation System

1 Accessories and Packing List

1.1 Unpacking Equipment

Carefully unpack the equipment from the shipping container. Inspect the ADS600-B unit and the package contents for evidence of shipping damage. Retain the shipping container and packaging material for reshipment if necessary.

1.2 Package Contents

The items included in the ADS600-B package are listed in Tables 1-1 and 1-2.

Table 1-1: Package Contents

Part \#	Quantity	Description
$210-0004-00-00$	1	ADS600 Installation Kit (see Table 1-2 for details)
$200-0012-X X-X X$	1	ADS600-B UAT Data Link Transceiver

Table 1-2: ADS600-B Installation Kit Contents (P/N 210-0004-00-00)

Part \#	Quantity	Description
$201-205167-1$	1	Receptacle Female, DSUB 37-pin
$201-205161-1$	1	Receptacle Female, DSUB 9-pin
201- DC-24660-33	1	DSUB 37-pin back-shell
201-5745407-1	1	Connector DSUB Latch Slide 37 position
201-M39029/63-368	20	Crimp contact, DSUB, 20 to 24 AWG wire

2 About this Manual

This manual describes the installation and checkout procedures for the ADS600-B UAT Data Link Transceiver.

The ADS600-B unit is intended to be installed in aircraft that do not require an STC for installation.

2.1 FCC Grant of Equipment Authorization

This equipment has been issued an FCC Grant of Equipment Authorization. The FCC ID is marked on the equipment nameplate.

3 Equipment Description

The ADS600-B UAT Data Link Transceiver contains a GPS/WAAS receiver and a Universal Access receiver and transmitter. This unit transmits a GPS position and aircraft information message once per second. Additionally, this unit receives messages from other UAT equipped aircraft and receives TIS-B/FIS-B messages from ADS-Rs. Data received by the ADS600-B is output to a display device.

Figure 3-1: Top view of ADS600-B UAT Data Link Transceiver

3.1 Overall Specifications

This section includes the physical, electrical, performance and environmental specifications for the ADS600-B UAT Data Link Transceiver.

* Physical

Height:	2.1 inches
Width:	5.4 inches (w/o mounting bracket)
	7.3 inches (w/ mounting bracket)
Depth:	6.2 inches
Weight:	1.5 lbs (w/o mounting bracket, excluding cables)
	1.6 lbs (w/ mounting bracket, excluding cables)

* Electrical

Voltage:
Input Current (10W nominal):

9-36VDC
Steady State: 0.7A @ 14VDC, 0.41A @ 24VDC
Transmit Peak: 1.1A @ 14VDC, $0.59 \mathrm{~A} @ 24 \mathrm{VDC}$

* UAT Performance

Regulatory:
Frequency:
Tolerance:
Data Rate:
Receiver Sensitivity:
Transmit Power:
Equipment Class:

DO-282B
978MHz
+/- 20ppm
1.04167 Mbps

Exceeds 90\%MSR@-98dBm
40W nominal at antenna
A1S (single bottom UAT antenna)

* GPS/WAAS Receiver Performance

Number of channels:
 20

Frequency:
Sensitivity (Tracking Mode):
Sensitivity (Acquisition Mode):
1575.42MHz L1
-159 dBm (Tracking mode)
-142 dBm (Acquisition mode)
1 second
< 35 seconds
< 35 seconds
0.1 seconds

5 Hz
1,000 Kts maximum @ 60,000 ft MSL
WGS-84

* Environmental

Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature:	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature variation:	$5^{\circ} \mathrm{C}$ per minute
Humidity:	94% at $65^{\circ} \mathrm{C}$
Maximum continuous altitude:	40,000 feet
Decompression:	40,000 feet
External Cooling:	Not required

* Avionics Interfaces

Annunciator Output
Altitude Encoder:
Maintenance Port:
External Position Input:
Display:
Capable of sinking 500 mA for turning on annunciator lamp RS232 asynchronous serial, ARINC429 ADC/AHRS source RS232 asynchronous serial

From ARINC743A source
RS232 asynchronous serial (Pass-through or Traffic interfaces) RS422 asynchronous serial (Pass-through or Traffic interfaces) ARINC735 Traffic interface

TIS-A Traffic interface

3.2 Transmitter Specification

The ADS600-B is a non-TSO device that complies with RTCA DO-282B.

3.3 System Interfaces

Figure 3-2: ADS600-B UAT Data Link Transceiver System Diagram

3.3.1 Display

The ADS600-B outputs traffic and weather information to compatible display. The ability to display traffic and/or weather depends on the display device.

3.3.2 Maintenance Port

The ADS600-B provides an RS232 communication port that is used to configure and monitor the status of the ADS600-B system via a computer. The maintenance port is required to be installed and connected.

3.3.3 Annunciator Output

The ADS600-B can drive an external annunciator lamp.

3.4 Antenna Requirements

3.4.1 GPS Antenna

The ADS600-B requires one GPS antenna. GPS antenna performance is critical to the operation of the ADS600-B GPS/WAAS receiver. Table 3-2 contains a list of GPS antennas that are recommended for use with the ADS600-B. Other GPS antennas may meet the installation requirements of the ADS600-B. Contact the factory to ensure antenna compatibility prior to installing your ADS600-B.

3.4.2 UAT Antenna

The ADS600-B requires one UAT antenna meeting the following specification: standard 50Ω vertically polarized antenna with a VSWR $<1.7: 1$ at 978 MHz . Table $3-1$ contains a list of UAT antennas that are recommended for use with the ADS600-B.

Some types (1030 and 1090 MHz) of transponder antennas use very thin radiator elements. These types of antennas should be closely evaluated to determine their suitability as UAT data link antennas.

Operating the ADS600-B without RF terminations on the UAT Antenna port can result in equipment damage. Operate the ADS600-B with the UAT antenna port terminated with a VSWR ratio of 3.0:1 or less.

3.5 Installation

This section describes the installation of the ADS600-B including mounting, wiring and connections.

Read this entire section before proceeding with the installation of the ADS600-B.

Follow avionics installation practices per FAA Advisory Circular (AC) 43.13-1B, 43-13-2A, or FAA approved revisions to these documents.

Perform an electrical load analysis in accordance with AC 43.13-1B, Chapter 11, on the aircraft prior to installation to ensure that the aircraft's electrical system is capable of carrying the ADS600-B load. Section 3.1 describes the power consumption of the ADS600-B.

3.5.1 Materials Not Supplied

The following items are required for the ADS600-B installation, but are not supplied:

- UAT Antenna (Table 3-1 provides a list of recommended UAT Antennas)
- GPS Antenna, if installing an external GPS input for ADS600-B (Table 3-2 provides a list of recommended GPS Antennas)
- Wire (MIL-W-22759/16 or equivalent)
- Shielded wire (MIL-C-27500 or equivalent)
- Circuit Breakers
- Ring Terminals (for grounding)

Table 3-1: Acceptable ADS600-B UAT Antennas

Manufacturer	Part Num	Connector	Hole Template
RAMI	AV-74	BNC	$\underline{\text { http://www.rami.com/files/2/AV-74-Footprint.pdf }}$
RAMI	AV-741	BNC	$\underline{\text { http://www.rami.com/files/2/AV-741-Footprint.pdf }}$
Comant	CI-105	BNC	
Comant	CI-105-11	TNC	
Delta Pop	ADSB-UAT	BNC	http://www.deltapopaviation.com/Delta_Pop_Aviati on/Mounting_Detail.html

Table 3-2: Acceptable ADS600-B GPS Antennas

Manufacturer	Part Num	Connector	Hole Template
RAMI	AV-GPS	BNC	http://www.rami.com/files/2/AV-GPS-Footprint.pdf
Comant	CI-2480-400	GPS Uses TNC	
Comant	CI-420-200	TNC	
Comant	CI-429-200	TNC	

3.5.2 Tools Required

The D-Sub connector supplied with the ADS600-B uses crimp contacts. Table 3-3 identifies the crimp tool required to ensure consistent and reliable crimp contact connections for the D-Sub connector.

Table 3-3: Crimp Tools for High Density 22-24 AWG Socket Contact

Type	Hand Crimping Tool	Positioner	Insertion/Extraction Tool
Military P/N	M22520/2-01	M22520/2-09	M81969/1-04
Positronic	9507	$9502-3$	M81969/1-04
AMP	$601966-1$	$601966-6$	$91067-1$
Daniels	AFM8	K42	M81969/1-04
Astro	615717	615725	M81969/1-04

3.5.3 Equipment Mounting

The ADS600-B may be mounted in either a portable or remote mount configuration.

3.5.3.1 ADS600-B Portable Mount

The ADS600-B may be mounted in a portable configuration. The unit may be placed on a glare shield or any hard surface and affixed in place using Velcro®. The unit may also be portably attached to the aircraft using a RAM® mounting system.

3.5.3.2 ADS600-B Remote Mount

This option is recommended for non-certified, experimental or light sport aircraft to remotely mount the ADS600-B to the aircraft. The ADS600-B may be ordered with optional mounting brackets. Figure 3-3 describes the ADS600-B mounting bracket bolt pattern.

Figure 3-3: ADS600-B Mounting Bracket Pattern

3.5.3.3 Antenna Placement

3.5.3.3.1 GPS Antenna

The GPS Antenna placement guidelines can be found in AC 20-138A section 16. Refer to http://rgl.faa.gov/REGULATORY_AND_GUIDANCE_LIBRARY/RGADVISORYCIRCULAR .NSF/0/8a2ae2491c85226f86256e35004c638b/\$FILE/AC20-138A.pdf

3.5.3.3.2 UAT Antenna

The UAT Antenna MUST be installed no less than 5 feet from any Transponder /TCAS/TAS or DME antenna. Failure to adhere to this critical installation note will result in failure of the ADS600-B and void your warranty.

3.5.4 Cabling and Wiring

The ADS600-B should be installed in accordance with Refer to AC 43.13-1B Chapter 11. Refer to http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgAdvisoryCircular.nsf/list/AC\ 43.131B/\$FILE/Chapter\ 11.pdf
\checkmark The cable harness should not be exposed to wire chafing
\checkmark The cable harness should not be located near the fuel lines.
\checkmark The cable harness should not be located near high electrical capacity lines.
\checkmark The cable harness should not be routed near high energy sources.
\checkmark The cable harness should not be located near the flight control cables.
\checkmark Isolate the cable harness from the engine. Install cable harness in a protected area of the aircraft.
\checkmark Grounding pigtails should not exceed more than 4 inches in length.
\checkmark RG-400 coaxial cable is required for UAT Antenna. UAT Antenna cable loss should not exceed 3 dB . The 11 foot cable supplied with the ADS600-B has 1.5 dB loss. Limit the RG400 cable length to 15 feet.
\checkmark RG-400 coaxial cable is recommended for the GPS Antenna. The GPS Antenna coaxial cable loss, including connectors, must be less than 10 dB .
\checkmark Use 24 AWG or larger for all wiring except for power. See Wiring Diagrams section at the end of this document for recommended power and ground wiring.

3.5.5 Air Circulation and Cooling

The ADS600-B meets all DO-282B requirements without external cooling. However, as with all electronic equipment, lower operating temperatures will extend equipment life. It is not recommended to use outside forced air to cool the unit. Instead it is recommended that an electric forced air fan be installed to cool the equipment. If forced air cooling is installed, ensure that rainwater cannot enter or be sprayed on the ADS600-B.

3.6 Electrical Connections

3.6.1 Connectors

Table 3-4 describes the connectors supplied with the ADS600-B installation kit. The kit also contains crimp contacts for the D-Sub connector. Table 3-3 identifies the crimp tool required to ensure consistent and reliable crimp contact connections.

Table 3-4: Connectors

Ref	Description	Connector Type	Crimp Contact
P1	I/O	37 Pin D-Sub Receptacle	20-24 AWG socket contact
P2	UAT Antenna	TNC connector.	N/A
P3	GPS Antenna	TNC connector.	N/A

3.6.2 Interface Connector Definition

The following figure shows the side view of the ADS600-B depicting the DSUB and TNC connectors.

Figure 3-4: ADS600-B DB37, UAT and GPS Connectors

3.6.3 I/O Connector (P1)

A 37 pin D-Sub connector interfaces to external equipment and aircraft power. This connector can be found at the rear of the ADS600-B unit.

View looking at ADS600-B.
Figure 3-5: 37 Pin D-Sub Male Connector (P1)

The pin-out description for the I/O connector is defined in Table 3-5 and Table 3-6. Table 3-5 pertains to ADS600-B serial numbers 851 and above. Table 3-6 pertains to ADS600-B serial numbers below 851.

Table 3-5: I/O Connector Pin-Out (P1) for ADS600-B serial numbers 851 and above

Pin \#	I/O	Name	Description
1	--	Audio Out +	Traffic Alert Audio +
2	I	Time mark In -	ARINC 743A Time Mark In -
3	--	+5VDC PWR	Roving Networks Bluetooth \&Wifi module power - 100mA max
4	I	RS232 Maintenance RX	RS232 Maintenance Port Serial Data Input
5	O	DISPLAY PORT RS232 TX	RS232 Display Serial Data Output
6	--	Ground, Signal	Ground, Signal
7	I	Altitude Encoder RX	RS232 Altitude Encoder Input
8	O	429 OUT 1B	ARINC 429 Output Channel 1B
9	I	429 IN 1A	ARINC 429 Input Channel 1A
10	--	RESERVED	RESERVED
11	I	External PPS TTL In	External PPS TTL In
12	O	RS422 TX -	RS422 Display Channel Data Output -
13	I	RS422 RX +	RS422 Display Channel Data Input +
14	O	UAT Indicator Out	UAT Indicator Output (active low)
15	O	RESERVED RX RS232	TX Data to NexNav GPS
16	--	NEXNAV GPS TX	External Accord Technology NexNav Mini GPS TX
17	--	Ground, Signal	Ground, Signal
18	--	Power +	Main Aircraft Power Input (+9 to +36VDC)
19	--	Power +	Main Aircraft Power Input (+9 to +36VDC)
20	--	Audio Out -	Traffic Alert Audio -
21	I	Time mark In +	ARINC 743A Time Mark In +
22	O	RS232 Maintenance TX	RS232 Maintenance Port Serial Data Output
23	--	Ground, Signal	Ground, Signal
24	I	DISPLAY PORT RS232 RX	RS232 Display Serial Data Input
25	O	TIS TX	TIS Serial Data Output
26	--	Ground, Signal	Ground, Signal
27	O	429 OUT 1A	ARINC 429 Output Channel 1A
28	I	429 IN 1B	ARINC 429 Input Channel 1B
29	--	Squat Switch In	Discrete Input (Active Low)
30	O	RS422 TX +	RS422 display channel data output +
31	I	RS422 RX -	RS422 display channel data input -
32	--	Ground, Signal	Ground, Signal
33	I	Transponder Control RX	RX Data from Transponder configured for Remote Mode
34	I	NEXNAV GPS RX	External Accord Technology NexNav Mini GPS RX
35	O	Suppression Output	Suppression Output (active high)
36	I	Power Ground	Main Aircraft Power Ground
37	I	Power Ground	Main Aircraft Power Ground

Table 3-6: I/O Connector Pin-Out (P1) for ADS600-B serial numbers below 851

Pin \#	I/O	Name	Description
1	--	BLUETOOTH + 5VDC PWR	Roving Networks Bluetooth \& Wifi module power
2	I	Time mark In -	ARINC 743A Time Mark In -
3	--	Ground	RS232 Maintenance Port Ground
4	I	RS232 Maintenance RX	RS232 Maintenance Port Serial Data Input
5	O	RS232 TX	RS232 Display Serial Data Output
6	--	Ground	RS232 Altitude Encoder and TIS Output Ground
7	I	Altitude Encoder RX	RS232 Altitude Encoder Input
8	O	429 OUT 1B	ARINC 429 Output Channel 1B
9	I	429 IN 1A	ARINC 429 Input Channel 1A
10	--	RESERVED	RESERVED
11	I	External PPS TTL In	External PPS TTL In
12	O	RS422 TX -	RS422 Display Channel Data Output -
13	I	RS422 RX +	RS422 Display Channel Data Input +
14	O	UAT Indicator Out	UAT Indicator Output (active low)
15	O	NexNav GPS TX	TX Data to NexNav GPS
16	--	RESERVED	RESERVED
17	--	Ground	Ground
18	--	Power +	Main Aircraft Power Input (+9 to +36VDC)
19	--	Power +	Main Aircraft Power Input (+9 to +36 VDC)
20	--	RESERVED	RESERVED
21	I	Time mark In +	ARINC 743A Time Mark In +
22	O	RS232 Maintenance TX	RS232 Maintenance Port Serial Data Output
23	--	Ground	RS232 Display Ground
24	I	RS232 RX	RS232 Display Serial Data Input
25	O	TIS TX	TIS Serial Data Output
26	--	RESERVED	RESERVED
27	O	429 OUT 1A	ARINC 429 Output Channel 1A
28	I	429 IN 1B	ARINC 429 Input Channel 1B
29	--	Squat Switch In	Discrete Input (Active Low)
30	O	RS422 TX +	RS422 display channel data output +
31	I	RS422 RX -	RS422 display channel data input -
32	--	Ground	Ground
33	I	UAT Control Panel IN	UAT Control Panel IN
34	I	NexNav GPS RX	RX Data from NexNav GPS
35	O	Suppression Output	Suppression Output (active high)
36	I	Power Ground	Main Aircraft Power Ground
37	I	Power Ground	Main Aircraft Power Ground

3.7 Functional Descriptions

3.7.1 Power

Aircraft power is provided to the ADS600-B on the P1 I/O connector. The ADS600-B accepts input power from +9 to +36 VDC.

P1-18	Power +
P1-19	Power +
P1-36	Power Ground
P1-37	Power Ground

3.7.2 Discrete Outputs

The ADS600-B provides discrete outputs to provide status and drive annunciator lamps or other equipment. All discrete outputs are active low (i.e. grounded when active) and are of open collector design, capable of sinking up to 500 mA .

3.7.2.1 UAT Indicator

The UAT Indicator Out ($\mathrm{P} 1-14$) is used to indicate the status of the ADS600-B receiver. UAT Indicator Out will be grounded when the ADS600-B has detected a system failure. Otherwise, this output will be open.

3.7.2.2 Suppression Output

The Suppression Output (P1-35) is intended to suppress other L-band equipment (such as a transponder) when the UAT transmits. It will provide a high signal (Vin -1.0 V) whenever the UAT is transmitting and ground otherwise.

3.7.3 Discrete Inputs

The ADS600-B accepts discrete inputs to provide additional status information from the aircraft systems or equipment. All inputs are active low (i.e. grounded when active) and each input presents a load of greater than $100 \mathrm{k} \Omega$.

3.7.3.1 Air/Ground Discrete Input

The Air/Ground In (P1-34) is reserved for future use. It provides air/ground status input to the ADS600-B. The function of this input is configurable via the Maintenance PC (refer to section 3.8.1). The Air/Ground Input must be configured for one of the following options:

- A grounded Air/Ground In indicates that the aircraft is on the ground. Otherwise, an open indicates that the aircraft is in the air.
- An open Air/Ground In indicates that the aircraft is on the ground. Otherwise, a grounded Air/Ground In indicates that the aircraft is in the air.
- An air/ground switch is not installed. The air/ground state is set automatically based on the GPS ground speed. The air/ground speed threshold is configurable.

3.7.4 PPS Time Mark Input

When used with an external ARINC 743A position source, the time mark signals from the navigation sensor are connected to the ADS600-B time mark input pins (P1-2 and P1-21).

3.7.5 Serial Interfaces

The ADS600-B provides two bi-directional RS-232 serial interfaces, one receive only RS232 interface, one transmit only RS232 interface, one bi-directional RS-422 interface and one ARINC 429 input/output. These serial interfaces can be connected to:

- Display(s)
- Maintenance PC
- Altitude Encoder

The serial port pin-outs are:

P1-13	RS422 Display Serial Data Input +
P1-31	RS422 Display Serial Data Input -
P1-12	RS422 Display Serial Data Output -
P1-30	RS422 Display Serial Data Output +
P1-9	ARINC 429 Input Channel 1A
P1-27	ARINC 429 Output Channel 1A
P1-28	ARINC 429 Input Channel 1B
P1-8	ARINC 429 Output Channel 1B
P1-7	RS232 Altitude Encoder Serial Data Input
P1-25	RS232 TIS Serial Data Output
P1-6	RS232 Altitude Encoder and TIS Output Ground
P1-24	RS232 Display Serial Data Input
P1-5	RS232 Display Serial Data Output
P1-23	RS232 Display Ground
P1-4	RS232 Maintenance Port Serial Data Input
P1-22	RS232 Maintenance Port Serial Data Output
P1-26	RS232 Maintenance PC Ground

3.7.5.1 RS232 Altitude Encoder Input

An altitude encoder input may be provided through a RS232 serial data input (P1-7 and P1-6) to the ADS600-B. The maintenance PC commands (see section 3.8.1) describe how to enable the serial port for the Altitude Encoder Input. The baud rate for this port is also configurable via a maintenance command.

3.7.5.2 RS232 TIS Output (Garmin portables GPSMAP® x96)

The ADS600-B may be configured to output TIS data via a RS232 serial data output (P1-6 and P1-25) to a portable GPSMAP® display device. The maintenance PC commands (see section 3.8.1) describe how to enable the serial data port for the TIS Output. The baud rate for this port is also configurable via a maintenance command.

3.7.5.3 RS422 In/Out Display

The ADS600-B may be configured to output to a display device using the RS422 serial interface (P1-12, P-13, P1-30, and P1-31). The type of display device is configurable. The maintenance PC commands (see section 3.8.1) allow the installer to select a display device, as well as, a baud rate for the RS422 serial interface.

3.7.5.4 RS232 In/Out Display

The ADS600-B may be configured to output to a display device using the RS232 serial interface (P1-5, P1-23, and P1-24). The type of display device is configurable. The maintenance PC commands (see section 3.8.1) allow the installer to select a display device, as well as, a baud rate for the RS232 serial interface.

3.7.5.5 RS232 Maintenance PC

The ADS600-B communicates with the maintenance PC using a RS232 serial interface (P1-26, P1-4, and P1-22). This interface is used to view system status and to set the configuration of the ADS600-B. The maintenance PC serial channel is fixed at 115,200 baud, 8 data, no parity, 1 stop bit.

3.7.5.6 ARINC429

The ADS600-B provides one ARINC 429 input and output (P1-8, P1-9, P1-27, and P1-28) interface.

3.8 Post Installation Check

3.8.1 Maintenance PC

Refer to the ADS600-B Maintenance Port Tutorial section for a description of how to configure the ADS600-B unit via the Maintenance Personal Computer (PC).

3.8.2 Electrical Load Analysis

The ADS600-B is powered via a separate circuit breaker. For aircraft with multiple power buses, this circuit breaker is sourced from the non-essential bus. Circuits should be protected in accordance with guidelines in AC 43.13-1B, Chapter 11.

An electrical load analysis should be completed on each aircraft prior to installation in accordance with AC 43.13-1B, Chapter 11.

Table 3-7: Recommended Circuit Breaker

ADS600-B/ADS600-B-B	14 VDC	$\mathbf{2 8}$ VDC
Circuit Breaker	3 AMP	2 AMP

The circuit breaker placard should be labeled "UAT."

3.8.3 Mounting and Wiring Check

Verify that the ADS600-B is secured to the aircraft as described in section 3.5.3. Verify that both the UAT and GPS antennas are securely cabled to the appropriate connectors as depicted in Section 3.6.2. Verify that the display port, maintenance port and power/ground are securely cabled to the DB37 connector of the ADS600-B. Ensure that the slide lock of the DB37 is in the locked position. If any ADS600-B cabling is routed near the aircraft controls, verify free movement of the aircraft controls.

3.8.4 Functional Test

3.8.5 Weight and Balance

An aircraft weight and balance is required after installation of the ADS600-B. Follow the guidelines in AC 43.13-1B, Chapter 10, Section 2. Update the aircraft equipment list indicating the items relocated, added or removed. Table 3-8 identifies the weight of the ADS600-B equipment.

Table 3-8: ADS600-B Weights

Item	Weight
ADS600-B Only	1.5 lbs
ADS600-B with Mounting brackets	1.6 lbs

4 Limitations

4.1 Traffic Display

5 Troubleshooting

6 Maintenance

6.1 Altitude Source

The altitude source provide to the ADS600-B must be tested and inspected every 24 months as referenced in FAR 91.411

6.2 Calibration

There are no user-serviceable adjustments. There are no periodic maintenance functions to be performed on the ADS600-B product.

6.3 Tune-Up

The ADS600-B is tuned at the factory. No tune-up procedure or servicing is required by the user.

6.4 Battery Replacement

The internal GPS/WAAS receiver utilizes a lithium cell battery to store the GPS Almanac when the unit is not in operation. The lithium battery has an approximate service life of 7 years. The unit should be sent back to the factory for battery replacement every 7 years.

If the battery is not replaced per this interval, and becomes discharged, the ADS600-B will still remain fully functional and accurate; however the GPS acquisition time (during initial turn-on) will be increased.

6.5 Cleaning

The ADS600-B does not require regular cleaning.

Product Registration

Record the serial number of your unit here:
Please help us better support you by connecting to the NavWorx website (www.navworx.com) and completing the online product registration. Select the Product Registration link on the home page. You'll need to provide your product serial number when registering your unit.

ADS600-B Maintenance Port Tutorial

ASSUMPTIONS

This tutorial assumes that the ADS600-B is connected to a Personal Computer (PC) which is running a terminal emulator such as TeraTerm . The TeraTerm terminal emulator can be downloaded from: http://sourceforge.jp/projects/ttssh2/downloads/50074/teraterm-4.68.exe/

The baud rate of the terminal emulator must match that of the ADS600 maintenance port. The terminal emulator is configured for: baud rate 115200 bps, 8 bits, 1 stop bit, no parity and no flow control. Refer to the Interconnect Diagram: ADS600 Maintenance Port to Computer section for a diagram of the ADS600 maintenance port to PC serial port connection. Refer to the TERATERM section for a description on how configure the terminal emulator.

The aircraft should be located outside so as to allow the ADS600-B to receive the best GPS reception.

Unless otherwise noted, the commands described in this manual apply to both the ADS600 Receiver and ADS600-B Transceiver units.

Powering up The ADS600-B

When the ADS600-B powers up, it will send a power up message to the terminal emulator display. See Figure A below for an example of the power up message.

Figure A: ADS600-B Power Up Message

ADS600-B Command Format

ADS600-B maintenance port commands fall into 4 categories:

1) SET commands that allow the user to configure the ADS600-B
2) READ commands that display the status or configuration of the ADS600-B,
3) MAP commands that map a display protocol to a display port, and
4) ENABLE|DISABLE commands that enable or disable ADS600-B features.

Some commands are repeatable, as opposed to one-time commands. One-time commands elicit a single response from the ADS600-B. Repeatable commands are those whose repetition rate can be selected by the user and will display information at the repetition rate provided until the user interacts to stop the display. An example of a repeatable command is READ GPS 2. This command displays the reception status of the GPS receiver every 2 seconds. An example of a one-time command is READ GPS ALL. This displays the reception status of the GPS receiver one time.

Maintenance Port Help Commands contains a list of the ADS600-B commands. Also, entering the HELP command will list all of the available commands. The following sections describe some of the more commonly used ADS600-B commands.

MAINTENANCE PORT TIPS contains tips on entering maintenance port commands.

CONFIGURING ICAO Address

It is required to set the ICAO address for your aircraft. Go to the www.faa.gov website and find your aircrafts Mode-S code. This number is in octal format. Use an appropriate calculator to convert this octal number to a hex number. Use the SET ICAO 0x<hex_number> command to set your ICAO address. Use either READ ICAO or READ ALL command to verify that your ICAO is correctly set.

CONFIGURING ADS600-B FOR TRAFFIC/WEATHER DISPLAY DEVICES

To configure the ADS600-B traffic and weather display port, the port type and speed, and the type of protocol to be mapped to the display port must be specified. For example, to configure the ADS600-B traffic and weather output for the SkyVision Extreme, the following commands would be entered:

SET PROTOCOL SKY

MAP SKY RS232

SET BAUD RS232 115200

Since the TIS-A protocol has a dedicated port on the ADS600-B it is possible to output traffic to the TIS-A port, as well as, the serial display port. For example, to configure the ADS600-B traffic and weather output for the SkyVision Extreme and a TIS-A display (such as the Garmin ${ }^{\circledR}$ GPSMAP 496), the following commands would be entered (note the baud rate is only applicable to the SkyVision display as the TISA is always 9600):

SET PROTOCOL SKY TISA

MAP SKY RS232

SET BAUD RS232 115200

The READ ALL command can be used to verify the correct display port configuration.
The ADS600-B supports several display protocols and display port types. MAINTENANCE PORT HELP COMMANDS lists the protocols specified by the SET PROTOCOL type, the baud rates for the SET BAUD RS232|RS422 baud-rate command, and the display-protocol to port-mapping options of the MAP protocol port-type command.

Enabling Composite Tis (Optional)

If the ADS600-B is wired to accept TIS-A traffic sent from a Mode S transponder, then Composite TIS must be enabled. Enabling Composite TIS will allow the ADS600-B to forward both TIS-A traffic and UAT traffic to the configured traffic display devices. Enter the ENABLE COMPTIS command to enable Composite TIS. Enter DISABLE COMPTIS to disable the Composite TIS command.

Pressure Altitude InPut

Provide the ADS600-B with a pressure altitude input. This can be accomplished with either the dedicated serial input, or if the unit has the optional ARINC-429 interface, it will take Arinc label 203.

If the ADS600-B is not configured to use a pressure altitude encoder input, it uses the geometric altitude (GPS altitude) for all altitude references. The geometric and pressure altitudes may differ by many hundreds of feet. This becomes critical when determining how close a traffic target is to your ownship. Today, all traffic targets report pressure altitude to ATC (via the aircrafts altitude encoder). If the ADS600-B is using the geometric altitude for its ownship altitude reference, the accuracy of the altitude distance measure of a traffic target to the ownship altitude may be inaccurate by many hundreds of feet.

To confirm that the pressure altitude encoder input is configured and indicates the correct pressure altitude, enter the READ ALL command and verify that the PRIMARY altitude indicates the pressure altitude source.

DETERMINING GPS RECEPTION

To determine if the ADS600-B is receiving signals from the GPS constellation the user may enter either a repeatable or one-time GPS command. The repeatable command format is READ GPS num_of_seconds, where num_of_seconds can be specified from 1 to 30 seconds. For example if READ GPS 5 is entered, the GPS constellation status will be displayed every 5 seconds. The one-time command format is READ GPS ALL. This command will display the GPS constellation status one time.

Figure B shows the display output of the READ GPS 5 command. To determine whether you have good GPS satellite reception verify that the \#SVs (Space Vehicle) is greater than or equal 7. When "DGPS Corrections" is displayed WAAS is enabled.
\#SVs reporting less 7 may indicate that your GPS antenna and/or cable may need maintenance.

Figure B: READ GPS 5 Command Output

Monitoring Traffic Output

To verify that the ADS600-B is receiving traffic messages from other UAT equipped aircraft and/or ADS-R ground stations enter the READ TM number_of_seconds command. A one second repetition rate is recommended since the traffic list is updated once per second.

Figure C shows an output of the READ TM 1 command. Referring to the figure, the number following the $A L$: indicates the number of traffic targets in the traffic list that have been sent to the traffic display device. Likewise, the number following the UL: indicates the number of weather uplink messages that have been sent to the display device.

Figure C: READ TM 1 Command Output

View Current ADS600-B Configuration \& Status

The READ ALL command displays the current status and configuration of the ADS600-B. Figure D shows the output of the READ ALL command.

Figure D: READ ALL Command Output

Verifying ADS600-B to Traffic Display Interface

To verify that the ADS600-B is correctly connected to your traffic display device(s) enable the ADS600-B simulation mode. To do this, enter ENABLE SIM at the terminal emulator input. Your display device should display 1 traffic target. If your ownship's heading is north then the traffic targets should be displayed at $0^{\circ}, 45^{\circ}$ and 90°. Note, while in simulation mode the ADS600-B is still receiving UAT signals from other UAT equipped aircraft and the ADS-B ground stations so you may see more than 3 traffic targets on your traffic display device.

The simulation mode is disabled either by cycling power on the ADS600-B or entering the DISABLE SIM command. Remember to disable the simulation mode prior to flying.

UpGRADING ADS600-B SofTWARE

Power up the ADS600-B, connect the maintenance port and run the terminal program (TeraTerm).

Verify that the ADS600-B powered up correctly by viewing the startup info on the terminal program. It should look something like this:

Save the ADS600-B release to your PC. The following example shows where the ADS600-B releases are saved:

Figure E: ESTABLISH ADS600-B SOFTWARE RELEASE DIRECTORY ON PC

Now type in the "SET LOADER" command. The terminal should look something like this:

Figure F: SET LOADER COMMAND

After the "READY FOR FILE TRANSFER" message appears, send the attached "flash" file (file with the extension of .flash). Using the TeraTerm program, browse to the flash file that will be loaded.
TeraTerm should look something like this:

Figure G: TeraTerm SELECT FILE TO TRANSFER TO ADS600-B

From the terminal program, send this file to the ADS600-B just once. To send the file, select "Open".

The file takes about 3 minutes to load. During this time, the terminal program will display an increasing number of "." characters:

Figure H: ADS600-B FILE TRANSFER STATUS

When the entire file is downloaded to the ADS600-B, it will then erase and reprogram its internal memory. This is indicated on the terminal program by:

Figure I: ADS600-B PROGRAMMING STATUS

The ADS600-B now instructs that the power should be cycled (turned off, then on). When powered up, the ADS600-B will show its startup screen, and you should verify that the new software release number is displayed (see Figure A). That's it! Your ADS600-B is now ready for flight!

Figure J: POWER CYCLE ADS600-B

TeraTerm

DOWNLOAD:
http://sourceforge.jp/projects/ttssh2/downl oads/50074/teraterm-4.68.exe

ABOUT TeraTerm:

TeraTerm 4.6.8 is the latest version as of this document release.

After launching TeraTerm go to the Setup/Terminal page and set both the Transmit and Receive New Line to CR+TX. Also, set the Terminal ID to VT320. Verify that Local Echo is selected.

Figure K: TeraTerm TERMINAL SETUP

The baud rate of the terminal emulator must match that of the ADS600-B maintenance port so go to Setup/Serial Port and use the COM port of your choice configured for: baud rate $115200 \mathrm{bps}, 8$ bits, 1 stop bit, no parity and no flow control.

Figure L: TeraTerm PORT SETUP

These properties assume COM 1 port. If your computer is using another port, you should modify the "Port: COM1" selection above.

To log the output of the ADS600-B unit go to the TeraTerm Log page and select the file to save the output:

Figure M: LOG ADS600-B OUTPUT TO A FILE

Maintenance Port Tips

This section lists ADS600-B maintenance port tips.
> To stop the display of a repeating command press any key "A through Z " and then press enter.
> The ADS600-B maintenance port has no editing functionality (such as backspace, etc.). When a command doesn't appear to work, press enter several times and then reenter the command.

Maintenance Port Help Commands

Type HELP command to get list of available maintenance commands.

READ Commands

Command	Option	Description
HELP	ALL	List maintenance commands.
READ	PORTS	Display all pertinent status and configuration for unit.
READ	GPS ALL	Display mapping of protocol to RS232/RS422 ports.
READ	GPS SV	Display GPS configuration and status.
READ	GPS <seconds>	Display GPS statistics at an interval as specified by seconds.
READ	ICAO	Display aircraft 24-bit ICAO address.
READ	Display ownship message.	
READ	TM <seconds>	Display traffic manager information at an interval as specified by
READ	UM <seconds>	Display uplink manager (FIS-B) information at an interval as specified
READ		by <seconds>.

DISPLAY Commands

Command	Option	Description			
DISABLE	COMPTIS	Disable Composite-TIS mode.			
ENABLE	COMPTIS	Enable Composite-TIS mode.			
MAP	<SKY\|PASS	TA	A429S> <RS232	RS422>	Map protocols to physical port.
SET	BAUD ARINC429 <LOW\|HIGH>	Set ARINC429 clock speed.			
SET	BAUD RS232 <9600\|19200	38400	57600	115200>	Set baud rate for RS232 display port.
SET	BAUD RS422 <9600\|19200	38400	57600	115200>	Set baud rate for RS422 display port.
SET	FIS [number]	Set maximum number of FIS-B messages sent to the display.			
SET	FIS NRST <ALL\|NRST>	Display FIS-B messages received from nearest ground station or display FIS-B messages received from all ground stations.			
SET	MAXDIST [x.y]	Set maximum distance in $1 / 10^{\text {ths }}$ of a nautical mile for traffic targets. Traffic targets that are greater than this distance from the ownship location will not be passed on to the display(s).			
SET	MAXALT [feet]	Set maximum vertical distance in feet for traffic targets. Traffic targets that are greater than this distance from the ownship location will not be passed on to the display(s).			
SET	$\begin{aligned} & \text { PROTOCOL <PASS\|TA\|A429\|SKY\|NONE> \| } \\ & \text { <TISA\|A429\|A429S> } \end{aligned}$	Enter 1 or 2 protocols.			

TRANSMITTER Commands

Command	Option	Description																	
ENABLE	CSID	Enable call sign identification flag logic.																	
DISABLE	CSID	Disable call sign identification flag logic.																	
ENABLE	PALT	Enable pressure altitude input.																	
DISABLE	PALT	Disable pressure altitude input.																	
ENABLE	TX	Enable UAT transmitter.																	
DISABLE	TX	Disable UAT transmitter.																	
SET	CALLSIGN <1-8 character callsign>	Assign aircraft call-sign. The call-sign may not exceed 8 characters. Must be Alpha-Numeric characters only. No other characters allowed.																	
SET	```CAT <NOTYPE \| LIGHT	SMALL	LARGE	VERYLARGE	HEAVY	MANEUVERABLE	ROTORCRAFT	GLIDER	LIGHTERTHANAIR	PARACHUTIST	ULTRALIGHT	UAV	SPACEVEHICLE	EMERGENCY	SERVICE	POINTOBSTACLE	CLUSTEROBSTACLE	LINEOBSTACLE>```	Assign aircraft category to one of the following categories.
SET	GPSANT <left\|right> <x.y>	Set GPS antenna lateral axis [left or right of centerline] position in meters.																	
SET	GPSANT nose <x.y>	Set GPS antenna longitudinal axis [from nose] position in meters.																	
SET	GS <knots>	Assign speed in knots which determines when aircraft is airborne.																	
SET	ICAO <hexadecimal>	Assign the aircraft's ICAO address in a hexadecimal format. http://www.smalluas.com/download/ICAO_Annex_10_Volume_III.p df																	
SET	LENGTH <x.y>	Set length of aircraft in meters.																	
SET	WIDTH <x.y>	Set width of aircraft in meters.																	

TRANSMITTER (Pilot Input) Commands

Command	Option	Description					
SET	EMERGENCY <NONE \| GENERAL	MEDICAL	MINFUEL	NOCOMM	HIJACK	ACFTDOWN>	Set emergency code.
SET	FLIGHTID O:<octal-number>	Set flight ID as an octal 4 to 6 digit number. SET FLIGHTID 0:1200					
IDENT		Start IDENT. Mode status message is transmitted for $20+/-4$ seconds.					
ENABLE	SAA	Enable transmission of the temporary self-assigned address. The self-assigned address will be transmitted instead of the ICAO address.					
DISABLE	SAA	Disable transmission of the temporary self-assigned address. The ICAO address will be transmitted instead of the self-assigned address.					

UTILITY Commands

Command	Option	Description
RESET		Reset unit.
ENABLE	SIM	Enable simulation mode.
DISABLE	SIM	Disable simulation mode.
SET	GPSSRC <INT\|A743>	Set source of GPS: internal or external (ARINC 743A).
SET	LOADER	Used for updating unit software.

VERIFYING ADS600-B CONFIGURATION

\checkmark Power up the ADS600-B.
\checkmark Type "READ ALL" on TeraTerm input.
\checkmark Observe the output on the TeraTerm monitor. This output is saved to a log file that you specified above when logging was enabled.

- Verify the ICAO address. If the ICAO address is not correct, set the address using the SET ICAO <hexadecimal number> as described in the CONFIGURING ICAO ADDRESS section.
- Verify the aircraft category. If the aircraft category is incorrect, set the category using the SET CAT <category> command as described in the MAINTENANCE PORT HELP COMMANDS.
- Verify the aircraft callsign. If the aircraft callsign is incorrect, set the callsign using the SET CALLSIGN <8 characters> command as described in the MAINTENANCE PORT HELP COMMANDS.
- Verify that the flight ID is set to 1200 . If the flight ID is not set to 1200 , use SET FLIGHTID O:<octal number> command as described in the MAINTENANCE PORT HELP COMMANDS.
- Verify that the transmitter is enabled. WARNING: If the transmitter is enabled, the UAT antenna must be connected to the ADS600-B; otherwise damage to the ADS600-B will occur and your warranty will not be honored. If the transmitter is not enabled, use the ENABLE TX command as described in the MAINTENANCE PORT HELP COMMANDS.
- If a pressure altitude encoder is connected to the ADS600-B, the output of READ ALL command will indicate the PRIMARY SOURCE is PRESSURE and the SECONDARY SOURCE is GEOMETRIC.
\checkmark Type READ GPS ALL command. The DETERMINING GPS RECEPTION section describes how to interpret the GPS reception status. Verify that the ADS600-B reports good GPS reception.

Interconnect Diagram: ADS600 to GPSMAP® TIS-A

Interconnect Diagram: Bluetooth Display Port

Interconnect Diagram: Display Port

Interconnect Diagram: ADS600 Maintenance Port to Computer

Interconnect Diagram: Composite-TIS ${ }^{\text {TM }}$

Interconnect Diagram: ADS600 to AFS

Interconnect Diagram: ADS600 to AFS (TIS Traffic)

Interconnect Diagram: ADS600-B to GRT

Interconnect Diagram: ADS600-B to GRT HX/HS/WS (TIS Traffic)

Interconnect Diagram: GNS 480 ARINC 743A Position Source

Interconnect Diagram: ADS600-B to GNS 480 Traffic (ARINC 429)

Interconnect Diagram: ADS600-B to GNS 480 Traffic (RS-232 TIS)

Interconnect Diagram: ADS600-B to GNS 430 Traffic (ARINC 429)

Interconnect Diagram: ADS600 to Chelton

Interconnect Diagram: ADS600 to Chelton (Composite TIS ${ }^{\text {TM }}$)

Interconnect Diagram: ADS600-B to MX20/GMX 200 (RS422

 Traffic/Weather)

Interconnect Diagram: ADS600-B to MX20/GMX 200 (ARINC 429 Traffic)

Interconnect Diagram: ADS600-B to SL70 Transponder Control

Interconnect Diagram: ADS600-B to GTX 330 Transponder Control

Interconnect Diagram: ADS600-B to GTX 327 Transponder Control

